espnet2.legacy.nets.scorer_interface.ScorerInterface
espnet2.legacy.nets.scorer_interface.ScorerInterface
class espnet2.legacy.nets.scorer_interface.ScorerInterface
Bases: object
Scorer interface for beam search.
The scorer performs scoring of the all tokens in vocabulary.
Examples
Search heuristics: * espnet2.legacy.nets.scorers.length_bonus.LengthBonus
Decoder networks of the sequence-to-sequence models: : * espnet2.legacy.nets.pytorch_backend.nets.transformer.decoder.Decoder
- espnet2.legacy.nets.pytorch_backend.nets.rnn.decoders.Decoder
Neural language models: : * espnet2.legacy.nets.pytorch_backend.lm.transformer.TransformerLM
- espnet2.legacy.nets.pytorch_backend.lm.default.DefaultRNNLM
- espnet2.legacy.nets.pytorch_backend.lm.seq_rnn.SequentialRNNLM
final_score(state: Any) β float
Score eos (optional).
- Parameters:state β Scorer state for prefix tokens
- Returns: final score
- Return type: float
init_state(x: Tensor) β Any
Get an initial state for decoding (optional).
- Parameters:x (torch.Tensor) β The encoded feature tensor
Returns: initial state
score(y: Tensor, state: Any, x: Tensor) β Tuple[Tensor, Any]
Score new token (required).
- Parameters:
- y (torch.Tensor) β 1D torch.int64 prefix tokens.
- state β Scorer state for prefix tokens
- x (torch.Tensor) β The encoder feature that generates ys.
- Returns: Tuple of : scores for next token that has a shape of (n_vocab) and next state for ys
- Return type: tuple[torch.Tensor, Any]
select_state(state: Any, i: int, new_id: int = None) β Any
Select state with relative ids in the main beam search.
- Parameters:
- state β Decoder state for prefix tokens
- i (int) β Index to select a state in the main beam search
- new_id (int) β New label index to select a state if necessary
- Returns: pruned state
- Return type: state
