espnet2.enh.layers.beamformer_th.get_lcmv_vector_with_rtf
Less than 1 minute
espnet2.enh.layers.beamformer_th.get_lcmv_vector_with_rtf
espnet2.enh.layers.beamformer_th.get_lcmv_vector_with_rtf(psd_n: Tensor, rtf_mat: Tensor, reference_vector: int | Tensor | None = None, diagonal_loading: bool = True, diag_eps: float = 1e-07, eps: float = 1e-08) β Tensor
Return the LCMV (Linearly Constrained Minimum Variance) vector : calculated with RTF: <br/> h = (Npsd^-1 @ rtf_mat) @ (rtf_mat^H @ Npsd^-1 @ rtf_mat)^-1 @ p
Reference: : H. L. Van Trees, βOptimum array processing: Part IV of detection, estimation, and modulation theory,β John Wiley & Sons, 2004. (Chapter 6.7)
- Parameters:
- psd_n (torch.complex64) β observation/noise covariance matrix (β¦, F, C, C)
- rtf_mat (torch.complex64) β RTF matrix (β¦, F, C, num_spk)
- reference_vector (torch.Tensor or int) β (β¦, num_spk) or scalar
- diagonal_loading (bool) β Whether to add a tiny term to the diagonal of psd_n
- diag_eps (float)
- eps (float)
- Returns: (β¦, F, C)
- Return type: beamform_vector (torch.complex64)
